Dr Maria Kaisar – Developing new ways to assess kidneys so transplants last for longer.

With funding from Kidney Research UK, a team of researchers from the University of Oxford, the University of Nottingham and University College London will develop ways to assess donor kidneys and predict how well they will work after transplant.

Having a kidney transplant is the best treatment for kidney failure, but the demand for donated kidneys is high.

To save more lives, doctors are now accepting kidneys from older or higher risk donors. These kidneys may also work less well after transplantation. This can have devastating effects, causing patients once recovering from transplantation to also go back on to dialysis, and wait for another transplant.

Right now, doctors cannot accurately assess donor kidneys. This makes it difficult to predict how well a transplant will work and how long a kidney will last after it has been transplanted.

Thanks to Kidney Research UK’s grant award of £237,626, (in partnership with the Stoneygate Trust), the ADMIRE study ‘Assessing Donor kidneys and Monitoring Transplant Recipients’ aims to address this clinical challenge.

Dr Maria Kaisar

Dr Maria Kaisar from Oxford University’s Nuffield Department of Surgical Sciences (NDS) is the Principal Investigator on the study and leads a team of co-investigators from NDS (Professor Rutger Ploeg, Dr Edward Sharples, Mr Simon KnightMr James Hunter and Dr Sadr Shaheed), the Oxford Big Data Institute (Dr Alberto Santos Delgado and Dr Philip Charles) and the Radcliffe Department of Medicine (Dr Elizabeth Tunnicliffe)

Dr Maria Kaisar and her team will utilise the Oxford Transplant Biobank (OTB) and the Quality in Organ Donation (QUOD) biobank to look for marker proteins in the donors’ blood samples. They use these samples to develop a mathematical model to predict how well donor kidneys will work after transplantation. The successful model would allow doctors to accurately assess kidneys and only transplant those that will function well. It could also identify suitable kidneys previously deemed too high risk to transplant.

With Professors Sue Francis and David Long from the University of Nottingham and University College London, the NDS team will use the QUOD X platform to also develop a monitoring strategy. MRI scanning methods will be performed on both the donor organ before it is transplanted, and later on after transplantation. This will allow us to monitor how well the transplanted organ is functioning.

“I am absolutely delighted that our study received this funding award by Kidney Research UK in partnership with The Stoneygate Trust,” said Maria. “This funding will enable us to bring scientific and clinical expertise together in collaboration, to develop novel non-invasive methods to better assess donor kidneys and, predict how well a transplant will work in the recipient. We also envisage that our planned scientific work will offer many opportunities to our early career scientists, to further develop their skills and research expertise in studying kidney disease. “

Letizia Lo Faro – Use of QUOD samples in research ‘Case Study’

My name is Letizia Lo Faro and I am a Post-Doctoral research scientist in the Oxford Transplant research group. I have so far used QUOD samples in 4 or 5 separate research studies. In one of these, conducted together with Ms Flavia Neri (University of Padova), we were interested in studying the molecular features of donor kidneys with acute kidney injury (AKI) having different functional outcomes after transplant.

Letizia Lo Faro

Once we fully characterised our research question, we moved onto donor sample selection. We decided to compare 4 different groups of donors: with or without AKI and each with good (≥45 mL/min) or poor (<45 mL/min) function (eGFR) 12 months post-transplant, for a total of 40 donors. We maximised the difference between outcomes as much as possible and to allow for fair comparisons we decided to match the groups for several other variables (donor age and gender, BMI, cold ischaemia time, recipient age, recipient gender…just to name a few). I believe appropriate sample selection is a key step in such retrospective studies and we engaged with the QUOD Data Manager earlier on in the process. This provided us with a great overview of all the variables available and also made sure our groups were nicely balanced.

Once we were happy with the donor selection, we proceeded with requesting the samples from the biobank. In this case they were full RNAlater frozen kidney biopsies and formalin-fixed paraffin-embedded (FFPE) kidney tissue slides. In this study we were interested in studying protein expression, so first of all we processed the tissue biopsies to mechanically homogenise them and extract the proteins. Later on the proteins were quantified and the expression of 17 proteins of interest was analysed by Western Blotting (a technique where a mixture of proteins is separated on a gel, based on the molecular weight, and, following transfer on a membrane, proteins of interest are identified by binding to specific antibodies). Results were then analysed with statistical tools.

A set of FFPE slides was then utilised for histological assessment, by standard staining with haematoxylin and eosin (H&E), to quantify chronic and acute tissue damage. One additional set of slides was utilised for confirmation of the western blotting results by immunohistochemistry, another method which allows to check for the presence of certain proteins/products in a tissue, by binding with labelled antibodies.

Results from this study were presented at the British Transplantation Society meeting last year and we are currently finalising a manuscript for publication.

Our results suggested that specific molecular patterns are recognizable in acutely inured kidneys that proceed towards worse function after transplantation. In particular, Peroxisome proliferator-activated receptor gamma (PPAR gamma) specifically increased after acute injury that progressed to worse function, underlining a potential role of metabolic dysfunction in the development of kidney disease (Figure 1).

Figure 1. The protein PPARg, quantified by western blotting analysis, is significantly increased in AKI kidneys with poor outcomes 12months post-transplant.

Our findings have helped identify potential molecular mechanisms involved in the progression of acute kidney injury to chronic kidney disease and post-transplant dysfunction and may constitute a therapeutic target of further interventions aimed at improving the quality of donated kidneys with an acute injury.

Working with QUOD samples has allowed us to really dive deep into the study of molecular mechanisms of kidney injury and the availability of different sample types also allowed us to apply various techniques and methods to validate our findings.

5th National QUOD Symposium – 18 November 2019

We would like to invite you to the 2019 Autumn QUOD Symposium to be held in Manchester.

If you are interested in the pursuit of improvement of outcomes after transplantation through translational science, please register and join us for:

  • Consortium Research Presentations
  • Operational Highlights
  • Upcoming Developments
  • Partner Announcements

Time

  • 12pm Arrival and registration
  • 12.15pm Networking and buffet lunch
  • 1pm Symposium starts

Full programme to follow.

Register Here!

SymposiumPoster